Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Extremophiles ; 28(1): 7, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062175

RESUMO

Topoisomerases are crucial enzymes in genome maintenance that modulate the topological changes during DNA metabolism. Deinococcus radiodurans, a Gram-positive bacterium is characterized by its resistance to many abiotic stresses including gamma radiation. Its multipartite genome encodes both type I and type II topoisomerases. Time-lapse studies using fluorescently tagged topoisomerase IB (drTopoIB-RFP) and DNA gyrase (GyrA-RFP) were performed to check the dynamics and localization with respect to DNA repair and cell division under normal and post-irradiation growth conditions. Results suggested that TopoIB and DNA gyrase are mostly found on nucleoid, highly dynamic, and show growth phase-dependent subcellular localization. The drTopoIB-RFP was also present at peripheral and septum regions but does not co-localize with the cell division protein, drFtsZ. On the other hand, DNA gyrase co-localizes with PprA a pleiotropic protein involved in radioresistance, on the nucleoid during the post-irradiation recovery (PIR). The topoIB mutant was found to be sensitive to hydroxyurea treatment, and showed more accumulation of single-stranded DNA during the PIR, compared to the wild type suggesting its role in DNA replication stress. Together, these results suggest differential localization of drTopoIB-RFP and GyrA-RFP in D. radiodurans and their interaction with PprA protein, emphasizing the functional significance and role in radioresistance.


Assuntos
DNA Girase , Deinococcus , DNA Girase/genética , DNA Girase/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA
2.
Toxicol In Vitro ; 90: 105591, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37011770

RESUMO

Consumer products containing botanicals or natural substances (BNS) are often preferred because there is a perception that 'natural' is safe. As with any product ingredient, a thorough safety assessment must be conducted, including a determination of skin sensitization potential. A modification of the Peroxidase Peptide Reactivity Assay (PPRA) was explored for screening BNS (B-PPRA) for their reactivity to a model cysteine peptide. The PPRA incorporates a horseradish peroxidase­hydrogen peroxide (+HRP/P) oxidation system for the activation of potential pre- and pro-haptens. BNS test materials contained <2% botanical constituent in either glycerin/water or propylene glycol/water. Stock solutions prepared in acetonitrile were diluted to 8 working concentrations. Direct reactivity was determined in reaction mixtures containing peptide and deferoxamine in potassium phosphate buffer. Enzyme-mediated reactivity determinations were performed with addition of +HRP/P. Initial studies demonstrated that results were reproducible and impact of carrier low. To determine the sensitivity of the assay, experiments were conducted with chamomile extract spiked with three sensitizers. Peptide depletion was observed in the +HRP/P reaction mixtures with isoeugenol spikes as low as 0.05%. The B-PPRA shows promise as a screening method for skin sensitization potential and could become part of a framework for the skin sensitization safety assessment of BNS.


Assuntos
Peptídeos , Extratos Vegetais , Estudo de Prova de Conceito , Extratos Vegetais/toxicidade , Pele , Peroxidase
3.
Front Cell Dev Biol ; 9: 636178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959605

RESUMO

DrRecA and PprA proteins function are crucial for the extraordinary resistance to γ-radiation and DNA strand break repair in Deinococcus radiodurans. DrRecA mediated homologous recombination help in DNA strand break repair and cell survival, while the PprA protein confers radio-resistance via its roles in DNA repair, genome maintenance, and cell division. Genetically recA and pprA genes interact and constitute an epistatic group however, the mechanism underlying their functional interaction is not clear. Here, we showed the physical and functional interaction of DrRecA and PprA protein both in solution and inside the cells. The absence of the pprA gene increases the recombination frequency in gamma-irradiated D. radiodurans cells and genomic instability in cells growing under normal conditions. PprA negatively regulates the DrRecA functions by inhibiting DrRecA mediated DNA strand exchange and ATPase function in vitro. Furthermore, it is shown that the inhibitory effect of PprA on DrRecA catalyzed DNA strand exchange was not due to sequestration of homologous dsDNA and was dependent on PprA oligomerization and DNA binding property. Together, results suggest that PprA is a new member of recombination mediator proteins (RMPs), and able to regulate the DrRecA function in γ-irradiated cells by protecting the D. radiodurans genome from hyper-recombination and associated negative effects.

4.
Transpl Immunol ; 63: 101333, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919027

RESUMO

BACKGROUND: Anti-HLA immunization determined by Panel Reactive Antibody (PRA) is known to have a negative impact on patient and graft survival. The predictive value of peak PRA (pPRA) on immunologic outcome, however, and the individual effects of anti-HLA class I and II antibodies remain uncertain. METHODS: The influence of HLA immunization on immunologic outcome parameters and graft survival was investigated in 1150 adult patients without pretransplant donor-specific antibodies (DSA) and in a subgroup of elderly kidney recipients aged ≥ 65 (n = 264). Anti-HLA immunization was defined as a pPRA > 0%. We investigated the influence of class I and II pPRA by dividing all kidney recipients into four pPRA groups (0%, 1-20%, 21-80%, >80%). RESULTS: Patients with non-donor-specific pretransplant anti-HLA immunization were at a higher risk for developing de novo DSA (49.9% vs. 18.7% p < 0.001), antibody mediated rejections (ABMR) (15.7% vs. 5.1%; p < 0.001), had a poorer death censored graft survival (69.2% vs. 86.2%; p < 0.001) and a higher decline of the calculated GFR. In elderly patients anti-HLA immunization only had a significant influence on the development of DSA (40.5% vs. 27.4%; p = 0.004). A multivariate model adjusted for all relevant factors revealed only class I but not class II pretransplant HLA immunization as a significant independent risk factor for de novo DSA, ABMR and death censored graft loss (HR 2.76, p < 0.001, HR 4.16, p < 0.001 and HR 2.07, p < 0.001, respectively). CONCLUSION: Mainly non-donor-specific pretransplant HLA class I immunization is an independent risk factor for the development of de novo DSA, ABMR and graft loss.


Assuntos
Tipagem e Reações Cruzadas Sanguíneas/métodos , Rejeição de Enxerto/imunologia , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Isoantígenos/imunologia , Transplante de Rim , Adulto , Idoso , Feminino , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/mortalidade , Sobrevivência de Enxerto , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Período Pré-Operatório , Prognóstico , Análise de Sobrevida , Doadores de Tecidos , Resultado do Tratamento
5.
J Gastrointest Surg ; 23(1): 51-57, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30206765

RESUMO

BACKGROUND: Compared to non-surgical weight loss (Diet), weight loss after Roux-en-Y gastric bypass (RYGB) results in greater rates of non-alcoholic steatohepatitis (NASH) resolution. Changes in bile acid physiology and farnesoid X receptor (FXR) signaling are suspected mediators of postoperative NASH improvement. Recent experimental evidence suggests that upregulation of hepatic peroxisome proliferator-activated receptor α (PPARα) activity might also impact NASH improvement. As FXR partly regulates PPARα, we compared resolution of NASH and changes in hepatic PPARα and FXR gene expression following Diet and RYGB. METHODS: We searched the Gene Expression Omnibus database to identify human studies with liver biopsies containing genomic data and histologic NASH features, at baseline and after Diet or RYGB. Microarray data were extracted for PPARα and FXR gene expression analyses using GEOquery R package v.2.42.0. RESULTS: We identified one study (GSE83452) where patients underwent either Diet (n = 29) or RYGB (n = 25). NASH prevalence was similar at baseline (Diet 76% versus RYGB 60%, P = ns). After 1 year, NASH resolved in 93.3% of RYGB but only in 27.3% of Diet (P < 0.001). Hepatic PPARα and FXR gene expression increased only after RYGB (P < 0.001). These changes were also found when analyzing only patients that resolved NASH (P < 0.01), and patients without NASH at baseline and follow-up (P < 0.05). CONCLUSIONS: Compared to Diet, RYGB results in greater NASH resolution with concurrent upregulation of hepatic PPARα and FXR. Our findings point to concurrent PPARα and FXR activation, triggered by RYGB, as a potential mechanism to improve NASH.


Assuntos
Derivação Gástrica , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/genética , Receptores Citoplasmáticos e Nucleares/genética , Redução de Peso/fisiologia , Adulto , Bases de Dados Genéticas , Dieta , Feminino , Expressão Gênica , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Transdução de Sinais , Regulação para Cima
6.
DNA Repair (Amst) ; 73: 144-154, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30527928

RESUMO

The Deinococcus radiodurans bacterium is one of the most radioresistant organisms known. It can repair hundreds of radiation-induced DNA double-strand breaks without loss of viability and reconstitute an intact genome through RecA-dependent and RecA-independent DNA repair pathways. Among the Deinococcus specific proteins required for radioresistance, the PprA protein was shown to play a major role for accurate chromosome segregation and cell division after completion of DNA repair. Here, we analyzed the cellular role of the deinococcal RecN protein belonging to the SMC family and, surprisingly, observed that the absence of the RecN protein suppressed the sensitivity of cells devoid of the PprA protein to γ- and UV-irradiation and to treatment with MMC or DNA gyrase inhibitors. This suppression was not observed when ΔpprA cells were devoid of SMC or SbcC, two other proteins belonging to the SMC family. The absence of RecN also alleviated the DNA segregation defects displayed by ΔpprA cells recovering from γ-irradiation. When exposed to 5 kGy γ-irradiation, ΔpprA, ΔrecN and ΔpprA ΔrecN cells repaired their DNA with a delay of about one hour, as compared to the wild type cells. After irradiation, the absence of RecN reduced recombination between chromosomal and plasmid DNA, indicating that the deinococcal RecN protein is important for recombinational repair of DNA lesions. The transformation efficiency of genomic DNA was also reduced in the absence of the RecN protein. Here, we propose a model in which RecN, via its cohesin activity, might favor recombinational repair of DNA double strand breaks. This might increase, in irradiated cells, DNA constraints with PprA protein being required to resolve them via its ability to recruit DNA gyrase and to stimulate its decatenation activity.


Assuntos
Reparo do DNA , Enzimas de Restrição do DNA/deficiência , Deinococcus/genética , Raios gama/efeitos adversos , Reparo de DNA por Recombinação/efeitos da radiação , Proteínas de Bactérias , DNA Girase , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Deinococcus/citologia , Deinococcus/enzimologia , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Mutação , Fenótipo , Tolerância a Radiação/genética , Reparo de DNA por Recombinação/genética , Inibidores da Topoisomerase II/farmacologia
8.
mSphere ; 1(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303692

RESUMO

PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCE D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium.

9.
Extremophiles ; 20(2): 195-205, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26847200

RESUMO

The multipartite genome of Deinococcus radiodurans forms toroidal structure. It encodes topoisomerase IB and both the subunits of DNA gyrase (DrGyr) while lacks other bacterial topoisomerases. Recently, PprA a pleiotropic protein involved in radiation resistance in D. radiodurans has been suggested for having roles in cell division and genome maintenance. In vivo interaction of PprA with topoisomerases has also been shown. DrGyr constituted from recombinant gyrase A and gyrase B subunits showed decatenation, relaxation and supercoiling activities. Wild type PprA stimulated DNA relaxation activity while inhibited supercoiling activity of DrGyr. Lysine133 to glutamic acid (K133E) and tryptophane183 to arginine (W183R) replacements resulted loss of DNA binding activity in PprA and that showed very little effect on DrGyr activities in vitro. Interestingly, wild type PprA and its K133E derivative continued interacting with GyrA in vivo while W183R, which formed relatively short oligomers did not interact with GyrA. The size of nucleoid in PprA mutant (1.9564 ± 0.324 µm) was significantly bigger than the wild type (1.6437 ± 0.345 µm). Thus, we showed that DrGyr confers all three activities of bacterial type IIA family DNA topoisomerases, which are differentially regulated by PprA, highlighting the significant role of PprA in DrGyr activity regulation and genome maintenance in D. radiodurans.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Girase/metabolismo , Deinococcus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA Girase/química , DNA Girase/genética , DNA Ligases/metabolismo , Deinococcus/genética , Mutação , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
11.
São Paulo; SMS; 2016. 132 p. tab.
Monografia em Português | LILACS | ID: biblio-870480

RESUMO

O centro de controle de zoonoses (CCZ) de São Paulo é o órgão responsável por desenvolver trabalhos de prevenção, proteção á saúde pública, por meio de vigilância e controle de animais domésticos (cães, gatos e animais de grande porte), de animais sinantrópicos (morcegos, pombos, ratos, mosquitos, abelhas entre outros), saneamento ambiental e educação em saúde...


Assuntos
Humanos , Monitoramento Ambiental , Riscos Ambientais , Programa de Prevenção de Riscos no Ambiente de Trabalho , Exposição Ocupacional , Saúde Ocupacional , Medicina do Trabalho , Condições de Trabalho
14.
Int J Biochem Cell Biol ; 45(11): 2541-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23994692

RESUMO

The DR2518 (RqkA) a eukaryotic type serine/threonine protein kinase in Deinococcus radiodurans was characterized for its role in bacterial response to oxidative stress and DNA damage. The K42A, S162A, T169A and S171A mutation in RqkA differentially affected its kinase activity and functional complementation for γ radiation resistance in Δdr2518 mutant. For example, K42A mutant was completely inactive and showed no complementation while S171A, T169A and T169A/S171A mutants were less active and complemented proportionally to different levels as compared to wild type. Amongst, different DNA binding proteins that purified RqkA could phosphorylate, PprA a DNA repair protein, phosphorylation had improved its affinity to DNA by 4 fold and could enhance its supportive role in intermolecular ligation by T4 DNA ligase. RqkA phosphorylates PprA at threonine 72 (T72), serine 112 (S112) and threonine 144 (T144) in vitro with the majority of it goes to T72 site. Unlike wild type PprA and single mutants of T72, S112 and T144 residues, the T72AS112A double and T72AS112AT144A triple mutant derivatives of PprA did not phosphorylate in vivo and also failed to complement PprA loss in D. radiodurans. Deletion of rqkA in pprA::cat background enhanced radiosensitivity of pprA mutant, which became nearly similar to ΔrqkA resistance to γ radiation. These results suggested that K42 of RqkA is essential for catalytic functions and the kinase activity of RqkA as well as phosphorylation of PprA have roles in γ radiation resistance of D. radiodurans.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Reparo do DNA , Deinococcus/enzimologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Tolerância a Radiação , Motivos de Aminoácidos , Sequência de Aminoácidos , DNA Ligases/metabolismo , DNA Bacteriano/metabolismo , Teste de Complementação Genética , Lisina/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...